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ABSTRACT

Magneto- and Electro-Encephalography (MEG/EEG) of-

fer probably the best trade-off between a superlative time

resolution and a fair spatial one. At the scale of sensors,

MEG/EEG signals reflect the global dynamic of the brain

whereas sources imaging through inverse problem provide

more regional behaviors. In both case, the data can be seen

as spatiotemporal structures from which we can extract fea-

tures such as optical flow, reflecting the amount of changes

in the sequence of brain activations. After having recalled

the theoretical basis of the so-called cortical flow, we present

two applications in different experimental paradigms. We

first show that our tool yields a temporal sequencing of brain

events at a global scale. At last we focus on more local neural

behaviors occurring in the visual cortex.

Index Terms— MEG, EEG, optical flow, brain dynamics,

microstates

1. INTRODUCTION

Time-resolved functional neuroimaging using magneto (MEG)

and electroencephalography (EEG) has now considerably

matured and may report on the spatiotemporal dynamics of

cortical activity at the millisecond range, with centimeter

spatial resolution.

The MEG/EEG community has reported quite early that

activation patterns at the surface of the head revealed kind

of landscape changes or less metaphorically quasi continu-

ous evolutions [1]. Analysis of such evolutions have often

favored geometrical approaches where MEG/EEG signals are

represented by a trajectory in a high dimensional space [2].

This method allowed first to suggest a quantitative descrip-

tion of so-called brain microstates. However this viewpoint

fails to describe precisely the local spatiotemporal structure

of dynamical changes.

In other domains such as meteorology, tools from the

computer vision community have been used to identify and

track specific patterns of physical phenomena evolving in

both space and time – e.g. cloud ensembles [3] and aurora

borealis [4] – using optical flow techniques derived from the

seminal work by Horn and Schunck [5].

In this paper, we first recall a new method that yields the

optical flow of brain activations computed onto the complex

cortical geometry. We also describe how this tool might be

aplied beneficially to the elucidation of some aspects of mass

neural dynamics both at the global and regional scales.

2. METHODS

2.1. The concept of cortical flow

We have recently introduced the concept of cortical flow [6]

to characterize the dynamics of spatially-distributed brain ac-

tivations at a spatial scale accessible to MEG/EEG brain map-

ping; i.e. on the order of 1 cm. Under the assumption that the

continuous distribution of neural activity I(p, t) has been ob-

tained in space and time from MEG/EEG data inverse model-

ing, a vector field V(p, t) might be derived at each point p of

the cortical manifold, which reflects the local displacements

of patterns of neural activation with time t. Under the seminal

hypothesis of the conservation of intensity I , this vector field

or optical flow satisfies :

∂tI + V · ∇MI = 0. (1)

Note that the scalar product is modified by the local curvature

of M, the domain of interest which is typically the cortical

surface.

2.2. Computation

2.2.1. Theory

The solution to Eq. 1 is not unique as long as the components

of V(p, t) orthogonal to ∇MI are left unconstrained. This

so-called ‘aperture problem’ has been addressed by a large

number of methods using e.g. regularization approaches.

These latter may be formalized as the minimization problem

of an energy functional, which both includes the regularity of

the solution and the agreement to the model:

E(V) =
∫
M

[
∂I

∂t
+ V · ∇MI

]2

dμ + λ

∫
M

C(V)dμ. (2)
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Here we have considered C(V) as a regularity factor which

operates quadratically on the gradient of the expected vector

field:

C(V) = Tr(t∇V.∇V), (3)

where Tr is the trace operator. It extends the seminal model of

Horn and Schunck [5] in which the domain of interest M is

equal to R
2. In this particular case the regularizing term reads

:

C(V) =
(∂Vx

∂x

)2

+
(∂Vx

∂y

)2

+
(∂Vy

∂y

)2

+
(∂Vy

∂x

)2

(4)

Both for 2D images [7] and more general problems on sur-

faces [6], minimization of (2) reduces to finding a vector field

V satisfying:

a(V,U) = f(U), (5)

for any U belonging to some subspace of smooth vector

fields. a and f consists of a bilinear symmetric definite

positive form and a linear form of ∇MI .

2.2.2. Numerical aspects

We have recently suggested an approach based on the finite el-

ements method (FEM) [8] to address the problem introduced

in Section 2.2.1 [6]. We have demonstrated that this strategy

is relevant and efficient when considering solving this prob-

lem on surface tessellations as irregular as the brain’s. The

basic idea consists in writing the unknown vector field as a

linear combination of the basis functions (Wi,α)i=1:N,α=1:2,

which are elementary vector fields defined at the N nodes of

the surface mesh of interest.

From (5), the coefficients – xj,β – of V expressed in this

basis are solutions of the linear problem:

∑
j=1:N,β=1:2

a(Wi,α,Wj,β)xj,β = f(Wi,α), (6)

for i = 1 : N and α = 1 : 2. Thus a simple inversion of the

symmetric, definite, positive matrix [a(Wi,α,Wj,β)] yields

a regularized estimate of the optical flow over any arbitrary

surface manifold.

2.3. Investigation of brain global dynamics

2.3.1. Sequencing time-resolved functional image series

From the local directionality measures on brain activations

as conveyed by V(x, t), we were interested in instantiat-

ing a quantitative index reflecting the global spatiotemporal

changes at every instant of a given time sequence of neural

activities. We define the global displacement energy (DE) of

neural activations as an analogue to a kinetic energy:

DE(t) =
∫
M

‖ V ‖2 dμ. (7)

The larger DE(t), the more likely the global topography of

brain activations is undergoing large scale changes. Con-

versely, the smaller DE(t), the more likely it is installed in

a semi-stable episode. Hence we revisit the concept of brain

stable microstates and redefine their occurrence as local min-

imal basins of DE(t).

2.3.2. Analysis of brain microstates at the group level

We now introduce a method to investigate the reproducibil-

ity of the temporal sequencing defined in 2.3.1 at the level

of a group of subjects. Let us consider a study involving ns

subjects and call (tsi )i=1...ns
the time instants when DEs(t)

reaches a local minimum for subject s. Finally, we define

(Is
i )i=1...ns

as the set of ns corresponding activities. We fol-

low the steps :

• Sorting the big vector composed of all the values (tsi ).
Calling T the sorted vector, we compute

dtmax = max
{
Tj+1 − Tj

}

• Segmentation of the considered temporal period in con-

tiguous intervals whose length is at most dtmax. Defi-

nition of the sets T s
n corresponding to the temporal in-

stants (tsi ) belonging to the nth previously defined in-

terval.

• Definition of the sets 1

Em,n =
{

Corr
(
Is
i , I

s′
i′

)
/∃(s, s′), i ∈ T s

m, i′ ∈ T s′
n

}

where Corr is the classical Pearson correlation applied

to the two spatial configurations.

• Construction of a (symmetric) matrix encoding the

possible similarity between neural activities taken from

different subjects and possibly different time periods.

Its coefficients are given by

μm,n = Mean(Em,n)

corrected by a last normalization step using Z-score

with respect to a pre-stimulation period :

Zm,n =
μm,n − Mean(∪m,n∈baselineEm,n)√

V ar(∪m,n∈baselineEm,n)

3. RESULTS

3.1. Data

We have used two different experimental protocols in Mag-

netoencephalography in order to study the spatiotemporal dy-

namic of the brain at global and local scales. The first one is

1They are not empty by definition of dtmax.
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a pure visual stimulation of an expending checkerboard rings

(Fig. 1) at the frequency of 5 Hz, known to produce steady

state activities in localized parts of the brain, such as visual ar-

eas [9]. In the second one a subject sees a ball falling and has

to catch it (condition A) or not (condition B) [10]. In this task

the brain is supposed to come across different steps from the

perception of the objects to the coordination and anticipation

and at last the catching which occurs around 400 ms.

Fig. 1. Expanding checkerboards at 5 Hz in a pure visual

stimulation.

3.2. Global behavior

We applied the method exposed in 2.3.2 in order to describe

different brain states in the ball-catching task. On Fig. 2

are plotted the matrices Zm,n for the two experimental con-

ditions. The considered temporal window ([−0.5, 0.6]s, re-

strained for convenience purpose) has been divided in 50 in-

tervals (dtmax equals 58 in the catch condition and 54 in the

nocatch).

Fig. 2. First line : matrices [Zm,n] for each experimental

condition. The dotted square indicates the time period dur-

ing which the subjects are performing the task. Second lines :

left (resp. right), 6 (resp. 4) MEG topographies associated to

a temporal interval around 300 ms and the averaged topogra-

phy.

The visual inspection of the matrices allows first to qual-

itatively distinguish the two conditions: For example there

is a huge red pattern between 300 and 400 ms in the catch

condition only. It reflects a best correlation between the to-

pographies of stable MEG activations with respect to the pre-

stimulus period. This suggests the existence of a strong re-

producibility during this time period which could correspond

to the motor preparation.

Moreover if we examine precisely a small temporal inter-

val around 300 ms (the red one indicated by the arrows on

both images) we can extract the 6 (resp. 4) corresponding to-

pographies (called Is
i in 2.3.2) and the averaged topography

in the catch (nocatch) condition. The comparison of the two

averaged topographies shows immediately spatial differences

between the two conditions.

3.3. Local directionality of neural information

On Fig. 3 we show a part of the left hemisphere and brain

activations (in slight red color) during the pure visual stimu-

lation at different time steps. More precisely the region of in-

terest corresponds to the occipital lobe which is well-known

to contain the visual areas [11].

Fig. 3. Sagittal view of the left occipital lobe : optical flow

(green) at several instants. The reconstructed MEG activities

are shown in a slight red shade.

We have plotted the optical flow of the MEG activations

with green arrows. However this representation is purely il-

lustrative and provides a lot of supplementary information.

Thus we propose an alternative visualization of this flow in

space and time on Fig. 4.

We consider a point p located in the calcarine sulcus (yel-

low) where the norm of the optical flow is maximum across

the time. We display the trajectory of this vector in the tan-

gent plane of p when the time is varying. According to [9],

we can separate the considered temporal window in three in-

tervals : the baseline ([−0.5, 0], green), the transitory regime

([0, 0.4], blue) and the stationary regime ([0.4, 1.5], red). We

can note that after the transitory period the optical flow trajec-

tory seems to follow an ellipsoid shape. It can be compared

to a limit cycle, which is a type of attractor in the dynamical

system framework.

At last it is interesting to compare the geometry of the flow

trajectory and the underlying cortical geometry : the principal

axis of the red ellipse has the same orientation as the calcarine
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Fig. 4. Left : sagittal view of occipito-parietal lobe of the left

hemisphere. Calcarine sulcus (yellow) and parieto-occipital

sulcus (blue). e1 and e2 are basis vectors of the tangent plane

at a point p where the norm of flow vector is maximal. Right :

Trajectory of the flow vector in the tangent plane (p, e1, e2).
The different colors correspond to different time periods (see

text).

sulcus. In other terms the expansion of the rings seems to

be correlated to propagations along the calcarine. This result

confirms retinotopic studies [11] and suggests that a dynam-

ical retinotopy could also be investigated through MEG and

optical flow analysis.

4. CONCLUSION

We have proposed two applications of the cortical flow, a tool

adapted from computer vision community. In the first one we

have seen that the global brain dynamic come across some re-

producible events at the group level. Moreover our analysis

allows to distinguish clear qualitative effects between two ex-

perimental conditions. The second application demonstrates

that optical flow provides relevant indices of directionality in

visual areas in accord with previous retinotopic studies. Thus

cortical flow could reflect the local flow of neural information.

After these encouraging results, we plan to investigate

the robustness of the global approach through other cogni-

tive tasks and to enrich the local description of optical flow

by connectivity indices between distant brain areas.
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